Gradient Descent, and Stochastic Gradient Descent (SGD)

Artificial Deep Neural Networks

Arman Afrasiyabi Department of Neurosurgery Yale University

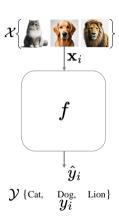
Machine learning

Given a dataset \mathcal{D} , we aim to find the best function f from a model class \mathcal{H} .

• Model class: A set of functions

$$\mathcal{H} = \{ f(\mathbf{x}_i; \mathbf{w}) \mid \mathbf{w} \in \mathcal{W} \}$$

where each $f\colon \mathcal{X}\to \mathcal{Y}$ is parameterized by \mathbf{w} , and \mathcal{X} and \mathcal{Y} represent the input and output spaces respectively.



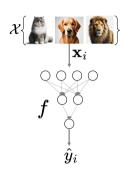
Deep learning

In the context of **deep learning**, *f* represents a type of neural network, such as an MLP (multilayer perceptron).

- Let's ℓ be a function measures the discrepancy between a prediction $\hat{y}_i = f(\mathbf{x}_i; \mathbf{w})$ and the true labels y_i .
- Loss/Cost function, L is an aggregate measure of the total loss over the entire training set \mathcal{D} :

$$L(\mathbf{w}; \mathcal{D}) = \frac{1}{n} \sum_{i} \ell(\hat{y}_i, y_i).$$

Here, n is the number of training examples in dataset \mathcal{D} , and \mathbf{w} represents the parameters of the model.



$$\mathcal{Y}$$
 {Cat, $egin{array}{ccc} \operatorname{Dog,} & \operatorname{Lion} \ y_i \end{array}$

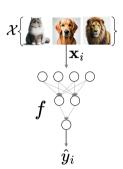
Deep learning

Training involves finding \mathbf{w}^* that minimizes the loss on the training set, while the

 Goal is to find parameters that minimize the loss function:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} \ell(f(\mathbf{x}_i; \mathbf{w}), y_i) + \lambda \sum_{j=1} w_j^2 \right)$$

- The loss function may also include regularization.
- \bullet Using the ${\bf validation}$ set, we evaluate the model while tuning the parameters of f
- Using test set, we conduct the final performance evaluation.



$${\mathcal Y}$$
 {Cat, $\displaystyle egin{array}{l} egin{array}$

Learning and optimization

- Objective: Minimize a loss function to find the best model parameters.
- "Learning": refers to the iterative process of adjusting model parameters to improve predictions based on training data.
 - It's crucial that the model not only performs well on training data but also generalizes to unseen test data.
- Optimization in Learning: Learning involves using optimization methods to minimize the loss function with respect to the model parameters.
- Challenges: Functions modeled by neural networks are typically non-linear and non-convex, making them complex for optimization.

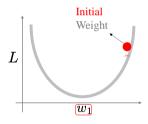
Loss function optimization

Let's define the mean squared error (MSE) as a criterion for measuring the discrepancy between the model predictions \hat{y}_i and the ground truth y_i .

$$L(\mathbf{w}, \mathbf{b}) = \frac{1}{2n} \sum_{i} (\hat{y}_i - y_i)^2$$

- ullet w is the collection of all weights in the network.
- b is the collection of all biases in the network.

Goal: develop an algorithm to find best weights (\mathbf{w}) and biases (b) which minimizes $L(\mathbf{w}, \mathbf{b})$.



MSE Loss function

When, the loss function L approaches zero,1 $\hat{y}_i = f(\mathbf{x}_i; \mathbf{w}, b) \approx y_i$ for all training inputs. This indicates:

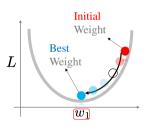
• The algorithm has performed well if it can find weights and biases such that $L(\mathbf{w}, b) \approx 0$.

Goal of the training algorithm:

• Choose **w** and *b* to minimize $L(\mathbf{w}, b)$.

Optimization Method:

• We'll use Gradient Descent.



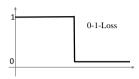
MSE Loss function

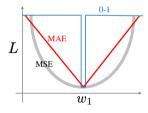
Smoothness and Differentiability:

- MSE is smooth and differentiable w.r.t. model parameters
- 0-1 Loss is non-differentiable and not smooth

Sensitivity to Parameter Changes:

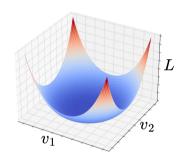
- MSE change continuously as weights and biases are adjusted, providing incremental improvements and detailed feedback.
- 0-1 Loss changes only when a misclassification is corrected, offering less frequent updates.





Gradient descent

How do we minimize a loss function in general? Suppose we want to minimize some function $L(\mathbf{v})$ where $\mathbf{v}=(v_1,v_2,\ldots)$.



Gradient descent

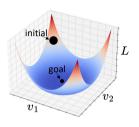
What if we have more variables?

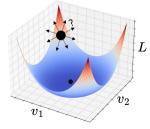
We could try calculus to find the extremum of L:

- Difficult when we have lots of variables.
- Largest neural networks have billions of weights and biases, complicating the calculus approach.

Big picture: gradient descent

- Think of $L(\mathbf{v})$ as a **height map** over the plane of parameters $\mathbf{v} = (v_1, v_2)^{\top}$.
- We pick a random starting point and *roll a ball* downhill to a valley (a minimum of *L*).
- **Question:** In which direction should we move to change *L* the most per unit step?
- Let $\hat{\mathbf{r}}$ be a **unit** direction ($\|\hat{\mathbf{r}}\| = 1$). We want the $\hat{\mathbf{r}}$ that maximizes the rate of change of L.





What are we trying to do? (Setup for steepest change)

• The gradient $\nabla L(\mathbf{v})$ is an arrow that points straight uphill (the direction of biggest increase of height). Formally, $L(\mathbf{v})$ is a function of several variables (v_1, v_2, \ldots, v_n) , the gradient is:

$$\nabla L(\mathbf{v}) = \left[\frac{\partial L}{\partial v_1}, \frac{\partial L}{\partial v_2}, \dots, \frac{\partial L}{\partial v_n}\right]^T.$$

It is a collection of all the partial derivatives — one for each variable.

Analogy: You're on a hill with a compass. The compass needle ∇L points uphill. Walking exactly with the needle is fastest uphill; walking exactly opposite is fastest downhill.

What are we trying to do? (Setup for steepest change)

We also choose a direction to move given by a unit arrow

$$\|\hat{\mathbf{r}}\| = 1$$

Think of $\hat{\mathbf{r}}$ as "which way we step next."

The reason we introduce the direction vector $\hat{\mathbf{r}}$ is because it is the formal way of asking:

"If I take a small step, which way should I go to change the loss the most?"

The gradient $\nabla L(\mathbf{v})$ does not let you compare all possible directions under a fixed step length.

How fast does L change if we step in a direction?

Directional derivative of the loss $D_{\hat{\mathbf{r}}}L(\mathbf{v})$: The local change rate of L at \mathbf{v} when moving an infinitesimal step in the unit direction $\hat{\mathbf{r}}$ is

$$D_{\hat{\mathbf{r}}}L(\mathbf{v}) = \nabla L(\mathbf{v})^{\top} \hat{\mathbf{r}}$$

$$= \|\nabla L(\mathbf{v})\| \|\hat{\mathbf{r}}\| \cos \phi$$

$$= \|\nabla L(\mathbf{v})\| \cos \phi$$

where ϕ is the angle between ∇L and $\hat{\mathbf{r}}$.

Dot product:

Algebraic form: $\mathbf{a}^{\top}\mathbf{b} = a_1b_1 + a_2b_2 + \cdots + a_nb_n$ Geometric form: $\mathbf{a}^{\top}\mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$

where θ is the angle between ${\bf a}$ and ${\bf b}$.

How fast does L change if we step in a direction?

- $\phi = 0^{\circ}$ (same) $\Rightarrow \cos \phi = 1$: largest positive change.
- $\phi = 90^{\circ}$ (perpendicular) $\Rightarrow \cos \phi = 0$: no instantaneous change.
- $\phi = 180^{\circ}$ (opposite) $\Rightarrow \cos \phi = -1$: largest negative change.

Which direction maximizes change? (Set-up)

Goal (unit step constraint):

$$rg \max_{\|\hat{\mathbf{r}}\|=1} D_{\hat{\mathbf{r}}} L(\mathbf{v})$$
 (choose a unit direction that increases L the most)

Directional derivative:

$$D_{\hat{\mathbf{r}}}L(\mathbf{v}) = \nabla L(\mathbf{v})^{\top}\hat{\mathbf{r}}.$$

Dot product identity (vector geometry):

$$\nabla L(\mathbf{v})^{\top} \hat{\mathbf{r}} = \|\nabla L(\mathbf{v})\| \|\hat{\mathbf{r}}\| \cos \phi = \|\nabla L(\mathbf{v})\| \cos \phi \quad (\|\hat{\mathbf{r}}\| = 1).$$

Key observation: Maximizing $\nabla L^{\mathsf{T}}\hat{\mathbf{r}}$ over unit vectors is the same as maximizing $\cos\phi$.

Linear-algebra

Having $\mathbf{a}^{\top}\mathbf{b} = c$, writing \mathbf{b} in terms of \mathbf{a} and c

Assuming $c \in \mathbb{R}$ and $\mathbf{a} \neq 0$, the **minimum-norm** solution is

$$\mathbf{b} = \frac{c}{\|\mathbf{a}\|^2} \, \mathbf{a}$$

Result & intuition: steepest up/down directions

$$\nabla L(\mathbf{v})^{\top} \hat{\mathbf{r}} = \|\nabla L(\mathbf{v})\|,$$
$$\hat{\mathbf{r}} = \frac{\nabla L(\mathbf{v})}{\|\nabla L(\mathbf{v})\|^2} \|\nabla L(\mathbf{v})\|$$

Steepest increase (uphill): (same direction as the gradient, unit length)

$$\hat{\mathbf{r}}_{\text{up}} = \frac{\nabla L(\mathbf{v})}{\|\nabla L(\mathbf{v})\|}$$

Steepest decrease (downhill): (opposite direction as the gradient, unit length)

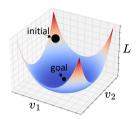
$$\hat{\mathbf{r}}_{\text{down}} = -\frac{\nabla L(\mathbf{v})}{\|\nabla L(\mathbf{v})\|}$$

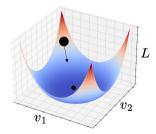
From direction to a practical step

• In practice, we absorb the normalization into the step size and use the classic form

$$\Delta \mathbf{v} = -\alpha \, \nabla L(\mathbf{v}) \quad (\alpha > 0).$$

• Analogy: α is how big a **stride** you take each step. Too big: you overshoot; too small: you crawl.





The update rule (first-order guarantee)

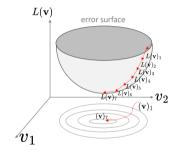
Standard gradient descent update:

$$\mathbf{v}_{t+1} = \mathbf{v}_t - \alpha_t \, \nabla L(\mathbf{v}_t) \ .$$

- Notes students find helpful:
 - α_t (learning rate) may be constant or scheduled.
 - ullet If $lpha_t$ is too large, the Taylor approximation breaks and the loss can *increase*.
 - Local minima/saddle points can slow progress momentum/Adam help, but the basic direction is still $-\nabla L$.

Summary of gradient descent

- Compute the gradient ∇L .
- Move in the opposite direction:
 - It's like falling down the slope of the valley.



Adapted from https://allmodelsarewrong.github.io/images/ols/gradient-error-surface3.svg

Choosing the learning rate

- Need to choose η small enough that the approximation $\Delta L \approx -\eta \nabla L \cdot \nabla L$ is good.
 - Otherwise, we may end up with $\Delta L > 0$.
- On the other hand, very small η implies tiny steps:
 - Slow convergence to the minimum.



Gradient descent in neural networks

In neural networks,

Goal: Use gradient descent to find weights and biases that minimize

$$L(\mathbf{w}, b) = \frac{1}{2n} \sum_{i} (y_i - \hat{y}_i)^2$$

Gradient descent update rules:

$$w_k \to w_k' = w_k - \eta \frac{\partial L}{\partial w_k}, \quad b_l \to b_l' = b_l - \eta \frac{\partial L}{\partial b_l}$$

 Repeatedly applying the update enables us to "roll down the hill" to the minimum of the cost function.

Function composition

Deep neural networks utilize a significant amount of function composition.

• Basic neuron structure:

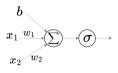
$$f(\mathbf{x}) = \sigma(g(\mathbf{x})), \quad \text{where } g(\mathbf{x}) = \mathbf{w}\mathbf{x} + b$$

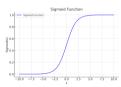
• The activation function $\sigma(z)$ can be a sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

• Differentiation using the chain rule:

$$f(\mathbf{x})' = \sigma'(g(\mathbf{x}))g'(\mathbf{x})$$





Gradient Descent for Linear Regression

Suppose that we have

a linear model:

$$f(\mathbf{x};\mathbf{w},b) = w_1 x_1 + w_2 x_2 + b$$

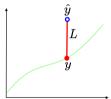
a loss function:

$$L(\mathbf{w}, b) = (\hat{y} - y)^2$$

which compares the predicted value $\hat{y} = f(\mathbf{x}; \mathbf{w}, b)$ to the true value y

• Compute the gradients using learning rate η :

Update rules involve derivatives of L with respect to w_1, w_2 , and b.



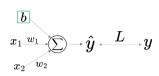
Gradients of b

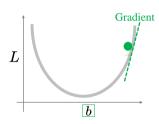
- a linear model: $\hat{y} = f(\mathbf{x}; \mathbf{w}, b) = w_1 x_1 + w_2 x_2 + b$
- Loss function L: compares the predicted value \hat{y} to the true value y

$$L(\mathbf{w}, b) = (y - \hat{y})^2$$
$$= y^2 - 2y\hat{y} + \hat{y}^2$$

• Gradient of L w.r.t. b: using the chain rule:

$$\Rightarrow \frac{\partial L}{\partial b} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b} = 2(\hat{y} - y)$$
$$\frac{\partial L}{\partial \hat{y}} = 2\hat{y} - 2y; \qquad \frac{\partial \hat{y}}{\partial b} = 1$$





Gradients of w_1

Linear model and loss function:

$$\hat{y} = f(\mathbf{x}; \mathbf{w}, b) = w_1 x_1 + w_2 x_2 + b$$

 $L(\mathbf{w}, b) = y^2 - 2y\hat{y} + \hat{y}^2$

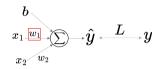
Gradient of L with respect to w_1 :

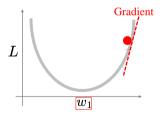
$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_1}$$

From the chain rule:

$$\frac{\partial L}{\partial \hat{y}} = 2\hat{y} - 2y, \quad \frac{\partial \hat{y}}{\partial w_1} = x_1$$

$$\Rightarrow \frac{\partial L}{\partial w_1} = (2\hat{y} - 2y)x_1$$





Gradients of w_2 and update rule

Linear model and loss function:

$$\hat{y} = f(\mathbf{x}; \mathbf{w}, b) = w_1 x_1 + w_2 x_2 + b$$

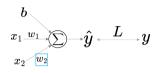
 $L(\mathbf{w}, b) = y^2 - 2y\hat{y} + \hat{y}^2$

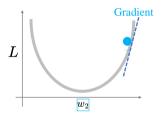
• Similarly, gradient of L with respect to w_2 :

$$\frac{\partial L}{\partial w_2} = (2\hat{y} - 2y)x_2$$

• Update rules:

$$b' = b - \eta \frac{\partial L}{\partial b}, \qquad w'_1 = w_1 - \eta \frac{\partial L}{\partial w_1}, \qquad w'_2 = w_2 - \eta \frac{\partial L}{\partial w_2}.$$





Gradient of a sigmoidal neuron

• Sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

• Use the quotient rule:

$$\frac{d}{dz}\left(\frac{\mathsf{num}}{\mathsf{den}}\right) = \frac{\mathsf{den} \cdot \frac{d}{dz}(\mathsf{num}) - \mathsf{num} \cdot \frac{d}{dz}(\mathsf{den})}{\mathsf{den}^2}$$

• Chain rule:

$$\frac{d}{dz} \left(\sigma(g(z)) \right) = \sigma'(g(z)) \cdot g'(z)$$

• Result:

$$\frac{d\sigma(z)}{dz} = \sigma(z) \left(1 - \sigma(z)\right)$$

• For more details, see: Understanding the Derivative of the Sigmoid Function

SGD for Large Sample Challenges

• Challenge: The loss function $L(\mathbf{w},b)$ is defined as an average over training example costs:

$$L(\mathbf{w},b) = rac{1}{n} \sum_i \ell_i$$
, where $\ell_i = rac{(y_i - \hat{y}_i)^2}{2}$

• The gradient of the loss function is:

$$\nabla L = \frac{1}{n} \sum_{i} \nabla \ell_i$$

Stochastic Gradient Descent for large sample challenges

The gradient of the loss function is:

$$\nabla L = \frac{1}{n} \sum_{i} \nabla \ell_{i}$$

- Computing the gradients for each training input x can be slow for large sample sizes.
- ⇒ Learning occurs slowly.
- Solution: We can speed things up by computing $\nabla \ell_i$ for a small random sample of training inputs:
 - Provides an estimate of ∇L .
 - Speeds up gradient descent and learning.
 - This approach is known as Stochastic Gradient Descent (SGD).

Stochastic Gradient Descent (SGD)

- Pick a mini-batch which is a random set of m training inputs x_1, x_2, \ldots, x_m :
- If m is large enough, the average value of $\nabla \ell_j$ will be approximately equal to the average over all ∇L :

$$\frac{1}{m} \sum_{j=1}^{m} \nabla \ell_j \approx \frac{1}{n} \sum_{x} \nabla \ell_i = \nabla L$$

• In neural networks, this gives update steps:

$$w_k o w_k' = w_k - \frac{\eta}{m} \sum_j \frac{\partial \ell_j}{\partial w_k}$$
 $b_l o b_l' = b_l - \frac{\eta}{m} \sum_j \frac{\partial \ell_j}{\partial b_l}$

Summary: Stochastic gradient descent

A training **epoch**:

- 1. Pick a random subset of the training data.
 - Referred to as a mini-batch.
- 2. Update the weights and biases using the gradient estimates from the mini-batch.
- 3. Pick another random mini-batch from the remaining training points and repeat step 2.
 - Repeat until all training inputs have been used.

Repeat multiple epochs until stopping conditions are met.

Analogy to political polling

- It is much easier to carry out a poll than to run a full election.
- Similarly, it's much easier to estimate gradients from mini-batches than the entire training set.
- Downside: Gradient estimates will be noisier in SGD.
- That's okay: we only need to move in a general direction that decreases L.
 - Don't need an extremely accurate estimate of the gradient.
- In practice: SGD is used extensively in learning neural networks.

